If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+18X-91=0
a = 1; b = 18; c = -91;
Δ = b2-4ac
Δ = 182-4·1·(-91)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{43}}{2*1}=\frac{-18-4\sqrt{43}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{43}}{2*1}=\frac{-18+4\sqrt{43}}{2} $
| 870=29k | | k-269=175 | | v-21=26 | | X+(4×+1)+(3x+1)=180 | | k-15=14 | | h+350=-118 | | 64x5=8x2 | | -20=5+25x | | t-849=-765 | | d=8.10d-15 | | 25-15b=110 | | j-26=21 | | g-34=17 | | −9·b=45 | | 12+2d=16 | | 9.12=3h | | 25+15b=110 | | d+21=27 | | d-350=280 | | 48+64=x | | -78=38-g | | k/24=-19 | | 48=64x | | 10x+30-8=12 | | c-563=296 | | e-12=16 | | q+91=742 | | 15w=840 | | 612+25u=812 | | k+23=915 | | 3+3f=69 | | 2{3x+2}=2x-1+x |